

SchemaSpy

Document your database simply and easily

Do you hate starting on a new project and having to try to figure out someone else’s idea of a database?
Or are you in QA and the developers expect you to understand all the relationships in their schema? If so then this tool’s for you.

About SchemaSpy

	Overview

	What’s new
	6.0.0

	6.1.0

	Features

	Sample documentation

	SchemaSpy GUI

User guide

	Installation
	Docker Image

	Application

	JDBC Driver

	Get Started
	Configuration

	Running SchemaSpy

	Advanced Usage
	Supply Connection-properties

	Create your own DB type

	Supply or override database type

	Create you own DB type super advanced

	Add markdown comments using additional metadata

	Command-Line Arguments
	General

	Database related

	Html report related

	DataTables related

	DatabaseType
	Selection

	Layout

	ConnectionSpec

	Other Properties

	Sql query instead of DatabaseMetaData

	Included

	SchemaMeta
	Add comments/remarks

	Add relationships

	Add remote tables

	Add columns

	Exclude columns from implied relationships

	Exclude columns from diagrams

	Databases
	Microsoft SQL Server

	Frequent Asked Questions
	General

	OSX

	Markdown

Overview

SchemaSpy is a Java-based tool (requires Java 8 or higher) that analyzes the metadata of a schema in a database and generates a visual representation of it in a browser-displayable format.
It lets you click through the hierarchy of database tables via child and parent table relationships as represented by both HTML links and entity-relationship diagrams.
It’s also designed to help resolve the obtuse errors that a database sometimes gives related to failures due to constraints.

SchemaSpy comes with ABSOLUTELY NO WARRANTY.

SchemaSpy is free software licensed and distributed under LGPL version 3 or later

SchemaSpy can be redistributed under the conditions of LGPL version 3 or later.

http://www.gnu.org/licenses/

If you like SchemaSpy, don’t forget to give us a star on Github.

SchemaSpy produces dot-file and uses either the dot executable from Graphviz [http://www.graphviz.org/] or embedded viz.js [https://github.com/mdaines/viz.js] to generate graphical representations of the table/view relationships. This was initially added for people who see things visually.
Now the graphical representation of relationships is a fundamental feature of the tool. Graphvis is not required to view the output generated by SchemaSpy, but the dot program should be in your PATH
(not CLASSPATH) or use the -gv or -vizjs arguments, else none of the entity relationship diagrams will be rendered.

SchemaSpy uses JDBC’s database metadata extraction services to gather the majority of its information, but has to make vendor-specific SQL queries to gather some information such as the SQL associated with a view and the details of check constraints.
The differences between vendors have been isolated to configuration files and are extremely limited. Almost all of the vendor-specific SQL is optional.

SchemaSpy was mentioned in one of the O’Reilly’s book Java Power Tools

What’s new

6.0.0

	
	Html report
	
	Now uses mustache

	DataTables for data

	Markdown rendering of comments

	
	DatabaseTypes:
	
	sqlite-xerial

	redshift

	orathin-service

	netezza

	mysql-socket

	mssql08

	mssql08-jtds

	mssql08-jtds-instance

	impala

	hive

	hive-kerberos-driverwrapper

	hive-kerberos-driverwrapper-zookeeper

6.1.0

	
	Diagrams
	
	Now has option to use embedded viz.js (no need for Graphviz) -vizjs

	Limit the degree of separation in table diagrams. Allowed values are 1 or 2.

	
	XML
	
	Now includes routines

	
	Html report
	
	Column page loads faster

	Table page contains check constraints

Features

	Supports most JDBC compliant dbms (support missing? you can add your own)

	Generates ER diagram for foreign keys

	Generates ER diagram for implied relationships (name, type) of a column matches a primary key

	Generates ER diagram for relationships based on rails naming conventions

	Shows column relationship and actions

	Shows routines (Functions/Stored procedures)

	Shows views and definitions

	Will render markdown present in comments

	Allows for supplying additional metadata, see SchemaMeta

	Present a set of found anomalies

Sample documentation

Browse some sample documentation [http://schemaspy.org/sample/index.html] generated by SchemaSpy. Note that this was run against an extremely limited schema so it doesn’t show the full power of the tool.

SchemaSpy GUI

SchemaSpy is a command line tool. If you’re more comfortable with the point-and-click approach then try out Joachim Uhl’s [http://www.joachim-uhl.de/] SchemaSpyGUI [http://schemaspygui.sourceforge.net/].

Installation

Docker Image

The latest Docker [https://docs.docker.com/get-docker/] image of SchemaSpy can be downloaded using docker pull schemaspy/schemaspy.

Docker documentation and run commands can be found on the SchemaSpy Docker Hub page [https://hub.docker.com/r/schemaspy/schemaspy/].

Application

Prerequisites

Before you can use SchemaSpy you must have the following prerequisites available on your local system.

	Java

	a JDBC driver file for your specific database engine

	viz.js or Graphviz

Java

You will need to have a supported version of Java installed, which is 17 or higher.

You can run java -version in a terminal to check the version of any currently installed Java.

If you don’t already have a proper version of Java installed, see Adoptium [https://adoptium.net/] or Oracle Java [https://www.oracle.com/java/technologies/javase-downloads.html] for download and install instructions for your operating systems.

viz.js or Graphviz

This is necessary to render graphical representations / images of the database relationships.

SchemaSpy version 6.1.0 and higher now comes with viz.js, so you will not need to download anything unless you’re using SchemaSpy version 6.0 or lower.

For SchemaSpy version 6.1.0 or higher, simply include -vizjs as a command line argument when executing the SchemaSpy command.

If you must use Schemaspy version 6.0 or less, then Graphviz will need to be installed as follows.

	
	Windows
	The easiest way to install Graphviz is to download the msi package from http://www.graphviz.org/download/

Warning

Remember to add the folder containing Graphviz’s dot.exe application to your system PATH variable, eg.

C:\Program Files (x86)\Graphviz2.38\bin

	
	Linux, Mac OS
	Please read carefully the detailed instructions on how to install Graphviz on your operating system [http://www.graphviz.org/download/].

Download SchemaSpy Executable .jar File

Download the latest stable executable .jar file (ex. schemaspy-[version].jar) from the SchemaSpy website [http://schemaspy.org] or GitHub releases page [https://github.com/schemaspy/schemaspy/releases].

For special cases, like testing a recent bug fix or feature [https://github.com/schemaspy/schemaspy/issues], we also make a bleeding-edge build file [https://schemaspy.org/schemaspy/download.html] available. The bleeding-edge build may not be stable and should only be used for testing.

Proceed to the Get Started section to learn how to configure and run the downloaded SchemaSpy executable.

JDBC Driver

No JDBC drivers are included with the jar-distribution of SchemaSpy, docker image contains MySQL, MariaDB, PgSQL, jTDS for MSSQL.

In some cases, a JDBC driver may already exist on your local system if your database happens to come with drivers. Otherwise, you will need to download one yourself.

If downloading a driver, you can usually find an appropriate driver by searching the internet for “[name of your database] JDBC driver”.

Verify the driver you download is compatible with the version of database management system / engine that you are using. For instance, if you’re using PostgreSQL 13 the JDBC driver will need to support PostgreSQL 13.

Here is a list of where you might find drivers for common database management systems:

	DB2 [https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads]

	Firebird [https://firebirdsql.org/en/jdbc-driver/]

	Impala [https://impala.apache.org/docs/build/html/topics/impala_jdbc.html]

	MySQL [https://www.mysql.com/products/connector/]

	MariaDB [https://downloads.mariadb.org/connector-java/]

	Netezza [https://www.ibm.com/support/knowledgecenter/SSULQD_7.2.1/com.ibm.nz.datacon.doc/c_datacon_installing_configuring_jdbc.html]

	Oracle [https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html]

	PostgreSQL [https://jdbc.postgresql.org/download/]

	Redshift [https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html]

	SQLite [https://github.com/xerial/sqlite-jdbc]

	SQL Server [https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server]

	Sybase [http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.12.0.1/dbprogramming/jconnect-using-jdbxextra.html]

	Teradata [https://downloads.teradata.com/download/connectivity/jdbc-driver]

You will need to tell SchemaSpy where to find the JDBC driver you require. For example, if you downloaded the Postgres JDBC file called postgresql-42.2.19.jar to the current directory the command would include the -dp argument, like -dp postgresql-42.2.19.jar.

If your JDBC .jar file is in a different directory, then the -dp argument would need to specify the directory path to the file, like -dp /opt/some-directory/your-jdbc-driver-name.jar.

See Command-Line Arguments for more information and advanced situations.

To add driver when using docker is documented at SchemaSpy Docker Hub page [https://hub.docker.com/r/schemaspy/schemaspy/].

Get Started

Configuration

Parameters can be specified in the command line (described below) or you can predefine configuration in the file.
SchemaSpy will search configuration file in
<current-dir>/schemaspy.properties
To use an alternative configuration file run SchemaSpy with parameter: java -jar schemaspy.jar -configFile path/to/config.file

Config file example:

type of database. Run with -dbhelp for details
if mssql doesn't work: try mssql08 in combination with sqljdbc_7.2, this combination has been tested
schemaspy.t=mssql
optional path to alternative jdbc drivers.
schemaspy.dp=path/to/drivers
database properties: host, port number, name user, password
schemaspy.host=server
schemaspy.port=1433
schemaspy.db=db_name
schemaspy.u=database_user
schemaspy.p=database_password
output dir to save generated files
schemaspy.o=path/to/output
db scheme for which generate diagrams
schemaspy.s=dbo

Running SchemaSpy

You can easily run SchemaSpy from the command line:

java -jar schemaspy.jar -t dbType -dp C:/sqljdbc4-3.0.jar -db dbName -host server -port 1433 [-s schema] -u user [-p password] -o outputDir

Parameters priority

It is important to notice, that command-line parameters override those configured in schemaspy.properties file.

Commonly used parameters

	[-t databaseType]
	Type of database (e.g. ora, db2, etc.). Use -dbhelp for a list of built-in types. Defaults to ora.

	[-db dbName]
	Name of database to connect to

	[-u user]
	Valid database user id with read access. A user id is required unless -sso is specified.

	[-s schema]
	Database schema. This is optional if it’s the same as user or isn’t supported by your database.
Use -noschema if your database thinks it supports schemas but doesn’t (e.g. older versions of Informix).

	[-p password]
	Password associated with that user. Defaults to no password.

	[-o outputDirectory]
	Directory to write the generated HTML/graphs to

	[-dp pathToDrivers]
	Where to search for jdbc driver.
The drivers are usually contained in .jar or .zip files and are typically provided by your database vendor.
Supports a directory as argument, which will add directory and all content to classpath, will recurse.
Supports multiple paths separated by OS dependent path separator

	[-hq] or [-lq]
	Generate higher or lower-quality diagrams. Various installations of Graphviz (depending on OS and/or version) will default to generat /ing
either higher or lower quality images. That is, some might not have the “lower quality” libraries and others might not have the “higher quality” libraries.
Higher quality output takes longer to generate and results in significantly larger image files (which take longer to download / display),
but the resultant Entity Relationship diagrams generally look better.

	[-imageformat outputImageFormat]
	The format of the image that gets generated. Supported formats are svg and png. Defaults to png.
E.g. -imageformat svg

For a comprehensive listing see Command-Line Arguments

Advanced Usage

Supply Connection-properties

	As an example running mysql with a new driver you’ll get warning
	According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL connection must be established by default if explicit option isn’t set. For compliance with existing applications not using SSL the verifyServerCertificate property is set to ‘false’. You need either to explicitly disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server certificate verification.

This can be omitted by adding connection property useSSL=false.

To add this connection property add following to commandline:
-connprops useSSL\=false

-connprops can also take a properties file as argument but when escaping the = with \ it will use it as “useSSL=false”.
If key or value contains / it needs to be escaped with a single \. Multiple pairs can be separated by ;.
If using linux shell or git bash in windows the \ also needs to be escaped with a \ so for example it would look like useSSL\\=false.

Create your own DB type

As an example we will add the connection property from above to the mysql db-type

	Create a new file in same directory as the schemaspy-jar, let’s call it mysql-nossl.properties

	Add the following content to mysql-nossl.properties:

extends=mysql
connectionSpec=jdbc:mysql://<hostOptionalPort>/<db>?useSSL=false

	Now you can run SchemaSpy with -t mysql-nossl

If you want to have a closer look at the db-types you can find them at github [https://github.com/schemaspy/schemaspy/tree/master/src/main/resources/org/schemaspy/types]

Supply or override database type

	Create a new file in same directory as the schemaspy-jar, let’s call it myDbType.properties

	Start by extending the database type you want to supply or override sql statements for as an example we will extends postgresSQL:

extends=pgsql

	Queries you can supply or override can be found at Sql query instead of DatabaseMetaData we will override routines:

extends=pgsql
selectRoutinesSql=select r.routine_name, case p.prokind when 'f' then 'FUNCTION' when 'p' then 'PROCEDURE' when 'a' then 'AGGREGATE' when 'w' then 'WINDOW' else 'UNKNOWN' end as routine_type, case when p.proretset then 'SETOF ' else '' end || case when r.data_type = 'USER-DEFINED' then r.type_udt_name else r.data_type end as dtd_identifier, r.external_language as routine_body, r.routine_definition, r.sql_data_access, r.security_type, r.is_deterministic, d.description as routine_comment from information_schema.routines r left join pg_namespace ns on r.routine_schema = ns.nspname left join pg_proc p on ns.oid = p.pronamespace and r.routine_name = p.proname left join pg_description d on d.objoid = p.oid where r.routine_schema = :schema

	We also want to add materialized views to view as document at Other Properties:

extends=pgsql
selectRoutinesSql=select r.routine_name, case p.prokind when 'f' then 'FUNCTION' when 'p' then 'PROCEDURE' when 'a' then 'AGGREGATE' when 'w' then 'WINDOW' else 'UNKNOWN' end as routine_type, case when p.proretset then 'SETOF ' else '' end || case when r.data_type = 'USER-DEFINED' then r.type_udt_name else r.data_type end as dtd_identifier, r.external_language as routine_body, r.routine_definition, r.sql_data_access, r.security_type, r.is_deterministic, d.description as routine_comment from information_schema.routines r left join pg_namespace ns on r.routine_schema = ns.nspname left join pg_proc p on ns.oid = p.pronamespace and r.routine_name = p.proname left join pg_description d on d.objoid = p.oid where r.routine_schema = :schema
viewTypes=VIEW,MATERIALIZED VIEW

	Now run schemaspy with your own database type -t myDbType

Create you own DB type super advanced

Now we are going to connect to mysql thru unix socket, put on your helmets

	Download a unix socket library for java and all of it’s dependencies, for simplicity put them in a sub-folder called drivers in the same folder as the schemaspy-jar:

junixsocket-common-2.0.4.jar
junixsocket-mysql-2.0.4.jar
junixsocket-native-2.0.4-x86_64-MacOSX-gpp-jni.nar <- Im on OSX
junixsocket-native-2.0.4.nar
mysql-connector-java-5.1.32.jar
native-lib-loader-2.1.5.jar
slf4j-api-1.7.25.jar
slf4j-simple-1.7.25.jar

	Create your own db-type let’s call it my-mysql-socket.properties in same folder as the schemaspy-jar with following content:

connectionSpec=jdbc:mysql://<host>/<db>?socketFactory=<socketFactory>&socket=<socket>
socketFactory=ClassName of socket factory which must be in your classpath
socket=Path To Socket

	Now run schemaspy with the following options:

java -jar [schemaspy.jar] -t my-mysql-socket \
-dp lib/mysql-connector-java-[version].jar \
-loadjars \
-db [DBName] \
-host localhost \
-port 3306 \
-u [User] \
-socketFactory org.newsclub.net.mysql.AFUNIXDatabaseSocketFactory \
-socket [pathToSocket] \
-o [outputDir]

Replace values accordingly.

Yes, you need to specify -db, -host, -port

Yes, the socketFactory could have been written directly into the properties-file, this is just an example, mysql-socket exists as a db-type exactly like this.

And since you might want to use another unix socket library this doesn’t close any doors.

Add markdown comments using additional metadata

Schemaspy supports markdown in comments markdown

Not all dbms supports comments or long enough comments or comments might just be missing.

Schemaspy also supports supplying additional metadata SchemaMeta

More precise the ability to add/replace comments. Add comments/remarks

1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
2 <comments>Database comment</comments>
3 <tables>
4 <table name="ACCOUNT" comments="I've added comment that links using markdown to markdown documentation [markdown](https://daringfireball.net/projects/markdown/)" >
5 <column name="accountId" comments='And now the schemaspy avatar ![avatar](https://avatars3.githubusercontent.com/u/20635098?s=20&v=4 "SchemaSpy")' />
6 </table>
7 </tables>
8</schemaMeta>

Now just run with -meta [path-to-above-xml]

Command-Line Arguments

Most of the command-line arguments can be specified in a properties file either with the default name schemaspy.properties
or in a file specified using -configFile the command-line arguments should be prefixed with schemaspy. As an example -sso would be schemaspy.sso and
-u username would be schemaspy.u=username.

General

	[-h]
	Print help message

	[-dbhelp]
	Print databaseType required arguments

	[-configFile filePath]
	Path to configFile to be used, default is to look for schemaspy.properties

	[-o outputDirectory]
	Directory to write the generated HTML/graphs to

Database related

Connecting

	[-t databaseType]
	Type of database (e.g. ora, db2, etc.). Use -dbhelp for a list of built-in types. Defaults to ora.

	[-db dbName]
	Name of database to connect to.

	[-host hostName]
	Hostname/ip to connect to, if required by databaseType.

	[-port portNumber]
	Port that dbms listens to, if required by databaseType.

	[-u user]
	Valid database user id with read access. A user id is required unless -sso is specified.

	[-p password]
	Password associated with that user. Defaults to no password.

	[-sso]
	Single sign-on, used when -u and -p should be ignored. See also Single Sign-On

	[-pfp]
	Prompt for password, if you don’t want to have password in command history.

	[-connprops filePathOrKeyValue]
	Either a properties-file with additional properties or a key/value list, pairs separated by ;
and key and value separated by \= example -connprops key1\=value1;key2\=value2 see also Supply Connection-properties.
In linux shells or git bash on windows the \ also needs to be escaped so it should look like \\=.

ConnectionProperties will always be populated with -u and -p if they exist.

	[-dp pathToDrivers]
	Where to search for jdbc drivers.
The drivers are usually contained in .jar or .zip files and are typically provided by your database vendor.
Multiple jars can be specified using os-specific path separator.

Processing

	[-cat catalog]
	Filter using a specific catalog this is usually the root of the database and contains schemas.

	[-s schema]
	Database schema. This is optional if it’s the same as user or isn’t supported by your database.

	[-schemas listOfSchemas]
	List of schemas to analyze, separated by ,

	[-all]
	Try to analyze all schemas in database, schemas can be excluded with -schemaSpec which as defaults set by databaseType

	[-schemaSpec schemaRegEx]
	Schemas to analyze, default to all, might be specified by databaseType.

	[-dbthreads number]
	Specify how many threads/connections should be used when reading data from database, defaults to 15 or
as specified by databaseType

	[-norows]
	Skip fetching number of rows in tables.

	[-noviews]
	Skip processing of views.

	[-i includeTableRegex]
	Include table(s) in analysis, defaults to match everything

	[-I excludeTableRegex]
	Exclude table(s) from analysis, defaults to exclude tables containing $, can be overridden with -I ""

	[--include-routine-definition]
	Include routine definition in output

Additional data

	[-meta pathToFolder]
	Augment the database by using SchemaMeta. Specifying path to a folder containing files named [schema].meta.xml, if schema is not used it will look for [databaseName].meta.xml

One file per schema.

Html report related

	[-nohtml]
	Skip generation of html report.

	[-noimplied]
	Don’t look for implied relationships.

	[--no-orphans]
	Don’t include orphan tables in the relationships graph.

	[-nopages]
	Just list data as one long list instead of pages.

	[-rails]
	Use Rails-based naming convention [https://gist.github.com/iangreenleaf/b206d09c587e8fc6399e#relations-in-models] to find relationships between logical foreign keys and primary keys.

	[-template path]
	Path to custom mustache template/css directory, needs to contain full set of templates.
Bundled templates can be found in jar ‘/layout’ and can be extracted with jar tool or any zip capable tool.

	[-maxdet number]
	Limit for when tables should be shown with details.

	[-css fileName]
	Use a custom stylesheet. Bundled stylesheet can be extracted from jar(using zip capable tool), path ‘/layout/schemaSpy.css’

	[-desc description]
	Add a description to the index page.

	[-asciidoc]
	Uses asciidoc rather than markdown when processing descriptions

DataTables related

Parameters for Tables table in src/main/resources/layout/main.html

	[-noDbObjectPaging]
	List data in table with no paging, i.e. all data in a single list.

	[-dbObjectPageLength number]
	The number of items to list per page, if paging is enabled.

	[-dbObjectLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for Columns table in src/main/resources/layout/tables/table.html

	[-noTablePaging]
	List data in table with no paging, i.e. all data in a single list.

	[-tablePageLength number]
	The number of items to list per page, if paging is enabled.

	[-tableLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for Indexes table in src/main/resources/layout/tables/{table_name}.html

	[-noIndexPaging]
	List data in table with no paging, i.e. all data in a single list.

	[-indexPageLength number]
	The number of items to list per page, if paging is enabled.

	[-indexLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for Check Constraints table in src/main/resources/layout/tables/table.html and src/main/resources/layout/constraint.html

	[-noCheckPaging]
	List data in table with no paging, i.e. all data in a single list.

	[-checkPageLength number]
	The number of items to list per page, if paging is enabled.

	[-checkLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for Routines table in src/main/resources/layout/routines.html

	[-noRoutinePaging]
	List data in table with no paging, i.e. all data in a single list.

	[-routinePageLength number]
	The number of items to list per page, if paging is enabled.

	[-routineLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for Foreign Key Constraints table in src/main/resources/layout/constraint.html

	[-noFkPaging]
	List data in table with no paging, i.e. all data in a single list.

	[-fkPageLength number]
	The number of items to list per page, if paging is enabled.

	[-fkLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for Columns table in src/main/resources/layout/column.html

	[-noColumnPaging]
	List data in table with no paging, i.e. all data in a single list.

	[-columnPageLength number]
	The number of items to list per page, if paging is enabled.

	[-columnLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Parameters for all tables in src/main/resources/layout/anomalies.html

	[-noAnomaliesPaging]
	List data in table with no paging, i.e. all data in a single list.

	[-anomaliesPageLength number]
	The number of items to list per page, if paging is enabled.

	[-anomaliesLengthChange]
	Allow user of the webpage to change the number of items per page using a dropdown menu.

Note: -nopages overrides all [-no*Paging] parameters.

Diagram related

	[-gv directoryPath]
	Path to directory containing graphviz executable(dot).

	[-renderer :rendererName]
	Specify which renderer to use should be prefixed with ‘:’ example -renderer :cairo

	[-hq] or [-lq]
	Generate higher or lower-quality diagrams. Various installations of Graphviz (depending on OS and/or version) will default to generating
either higher or lower quality images. That is, some might not have the “lower quality” libraries and others might not have the “higher quality” libraries.
Higher quality output takes longer to generate and results in significantly larger image files (which take longer to download/display),
but the resultant Entity Relationship diagrams generally look better.

	[-imageformat outputImageFormat]
	The format of the image that gets generated. Supported formats are svg and png. Defaults to png.
E.g. -imageformat svg

	[-maxdet number]
	Limit for when tables shouldn’t be detailed. Evaluated against total number of tables in schema. Defaults to 300.

	[-font fontName]
	Change font used in diagrams, defaults to ‘Helvetica’

	[-fontsize number]
	Change font size in large diagrams, defaults to 11

	[-rankdirbug]
	Switch diagram direction from ‘top to bottom’ to ‘right to left’

	[-X excludeColumnRegex]
	Exclude column(s), regular expression to exclude column(s) from diagrams, defaults to nothing.

	[-x excludeIndirectColumnsRegex]
	Exclude column(s) from diagrams where column(s) aren’t directly referenced by focal table, defaults to nothing.

	[-vizjs]
	Use embedded viz.js instead of Graphviz. Useful when graphviz isn’t installed. Memory is set to 64 MB, if you receive ther error “Cannot enlarge memory arrays” please report this to us.

	[-degree 1 or 2]
	Limit the degree of separation (1 shows less, 2 is default), 1 is a good option for large databases with lots of relationships.

DatabaseType

You can create you’re own databaseType so lets go through how it works.

Selection

On the commandline you specify the databaseType using the option -t.
The option can be specified with either [name].properties or just [name]
the .properties will be added if missing. So if you create one, be sure
to have .properties extension.

	Example:
	-t mysql

	or
	-t mysql.properties

	The search order is:
	
	user.dir/

	Classpath

	Classpath in schemaspy supplied location

This actually means that if you supply -t my_conf/mydbtype

	It will look for:
	
	file: $user.dir/my_conf/mydbtype.properties

	Classpath: my_conf/mydbtype.properties

	Classpath: org/schemaspy/types/my_conf/mydbtype.properties

Layout

It can contain wast amounts of properties so we will break it down.
The Properties-file can contain instructions.

	extends
	extends which does what it means, it allows one to override or add
properties to an existing databaseType (by specifying a parent/base)

As an example:

extends=mysql

which you can see in mysql-socket.properties

	include
	include.[n] is a bit different it allows one to add a single property from another
databaseType. [n] is substituted for a number. The value has the form of [databaseType]::[key].

As an example:

include.1=mysql::schemaSpec

This would have been valid in the mariadb.properties

Then we have required properties:

	dbms=
	Database Management System should general without version, used for grouping

	description=
	Description for this specific databaseType (mostly used in logging) without dbms

	connectionSpec=
	We will talk more about this one. It’s the connectionUrl used, but it supports token replacement

	driver=
	FQDN of the JDBC driver as an example org.h2.Driver

ConnectionSpec

Let’s dive a bit deeper into the connectionSpec.

As an example from mysql-socket:

extends=mysql
connectionSpec=jdbc:mysql://<host>/<db>?socketFactory=<socketFactory>&socket=<socket>
socketFactory=ClassName of socket factory which must be in your classpath
socket=Path To Socket

We mentioned extends earlier.

ConnectionSpec contains the connectionUrl used with the jdbc driver, some might refer to it as the connectionString.

connectionSpec allow token replacement, a token is <[tokenName]>.

In the above example we have host, db, socketFactory, socket.

This means that when used it expects the following commandline arguments:

-h [host] (for host)
-db [dbname] (for db)
-socketFactory [socketFactory class]
-socket [path to socket]

host and db are already known, but -socketFactory and -socket has become a new commandline argument.
The presence of the keys in the databaseType properties file is only for description, it’s printed when -dbhelp is used as a commandline argument.
(db and host located in databaseType mysql which is extended)

There is also a synthetic token that can be replaced <hostOptionalPort> which combines host and port if port is supplied.

Default separator is : but can be changed by specifying another under the key hostPortSeparator

Other Properties

	dbThreads=
	number of threads that can be used to analyze the database

	schemaSpec=
	regular expression used in conjunction with -all (and can be command line param -schemaSpec)

	tableTypes=
	Which types should be considered tables, default is TABLE

	viewTypes=
	Which types should be considered views, default is VIEW

	multirowdata=
	If rows with same keys/ids should have it’s data appended to the first result, default is false

Sql query instead of DatabaseMetaData

When metadata in JDBC isn’t cutting the mustard. You can replace it with a sql query.
They are prepared and supports named parameters as long as they are available. Data is retrieved by column label.
So additional columns are ok, but you might need to alias columns so that they are returned correctly to schemaspy.

	:dbname
	DatabaseName -db

	:schema
	Schema -s

	:owner
	alias for :schema

	:table
	table that the query relates to (think selectRowCountSql)

	:view
	alias for :table

	:catalog
	Catalog -cat

	Possible overrides:
	
	selectSchemasSql=
	Fetch comments for a schema, expected columns:
 schema_comment

	selectCatalogsSql=
	Fetch comments for a catalog, expected columns:
 catalog_comment

	selectTablesSql=
	Fetch tables, expected columns:
 table_name, table_catalog, table_schema, table_comment, table_rows

	selectViewsSql=
	Fetch views, expected columns:
 view_name, view_catalog, view_schema, view_comment, view_definition

	selectIndexesSql=
	Fetch indexes, expected columns:
 INDEX_NAME, TYPE, NON_UNIQUE, COLUMN_NAME, ASC_OR_DESC

	selectPrimaryKeysSql=
	Fetch table PKs, expected columns:
 TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, KEY_SEQ, PK_NAME

	selectRowCountSql=
	Fetch row count for a table, expected columns:
 row_count

	selectColumnTypesSql=
	Fetch column type for all columns, expected columns:
 table_name, column_name, column_type, short_column_type

	selectRoutinesSql=
	Fetch routines, expected columns:
 routine_name, routine_type, dtd_identifier, routine_body, routine_definition,sql_data_access, security_type, is_deterministic, routine_comment

	selectRoutineParametersSql=
	Fetch parameters for routines, expected columns:
 specific_name, parameter_name, dtd_identifier, parameter_mode

	selectViewSql=
	Fetch definition for a view, expected columns:
 view_definition, text (text has been deprecated)

	selectViewCommentsSql=
	Fetch comments for all views, expected columns:
 view_name, comments

	selectViewColumnCommentsSql=
	Fetch column comments for all views, expected columns:
 view_name|table_name, column_name, comments

	selectCheckConstraintsSql=
	Fetch check constraints for all tables, expected columns:
 table_name, constraint_name, text

	selectTableIdsSql=
	Fetch ids for all tables, expected columns:
 table_name, table_id

	selectIndexIdsSql=
	Fetch ids for all indexes, expected columns:
 table_name, index_name, index_id

	selectTableCommentsSql=
	Fetch comments for all tables, expected columns:
 table_name, comments

	selectColumnCommentsSql=
	Fetch comments for all columns, expected columns:
 table_name, column_name, comments

	selectSequencesSql=
	Fetch all sequences from the database, expected columns:
 sequence_name, start_value, increment
 start_value and increment defaults to 1 if missing

Included

	Dbms

	Description

	Argument -t

	 Amazon Redshift

	Standard

	redshift

	 Apache Derby

	Embedded Server

	derby

	Network Server

	derbynet

	 Apache Hive

	Keytab support

	hive-kerberos-driverwrapper

	Standard

	hive

	Keytab support, zookeeper

	hive-kerberos-driverwrapper-zookeeper

	 Apache Impala

	Standard

	impala

	 ClickHouse

	Standard

	clickhouse

	 Firebird

	Standard

	firebird

	 Force

	Standard

	force

	 H2

	Server 1.0

	h2

	Server 2.0

	h2-2

	 HSQLDB

	Server

	hsqldb

	 IBM DB2

	UDB Type 4 Driver

	udbt4

	z/OS with the ‘App’ Driver

	db2zos

	Type 4 ‘Net’ Driver

	db2net

	‘App’ Driver

	db2

	i (former as400) driver

	db2i

	z/OS Type 4 ‘Net’ Driver

	db2zosnet

	 IBM Informix

	Standard

	informix

	 IBM Netezza

	Standard

	netezza

	 MariaDB

	Standard

	mariadb

	 Microsoft SQL Server

	2008+

	mssql08

	jTDS 2000+ instance

	mssql-jtds-instance

	2017+

	mssql17

	2000+

	mssql

	jTDS 2017+

	mssql17-jtds

	jTDS 2005+ instance

	mssql05-jtds-instance

	jTDS 2008+ instance

	mssql08-jtds-instance

	jTDS 2000+

	mssql-jtds

	jTDS 2005+

	mssql05-jtds

	2005+

	mssql05

	jTDS 2008+

	mssql08-jtds

	 MySQL

	Unix Socket

	mysql-socket

	TCP/IP

	mysql

	 Oracle

	Thin Driver

	orathin

	OCI8 Driver

	ora

	Thin Driver, service

	orathin-service

	 PostgreSQL

	11 or later

	pgsql11

	Before Version 11

	pgsql

	 SAP MaxDB

	Standard

	maxdb

	 SQLite

	Xerial

	sqlite-xerial

	SQLite

	sqlite

	 Snowflake

	Standard

	snowflake

	 Sybase

	Server (jdbc2)

	sybase2

	Server (jdbc3)

	sybase

	Server (jdbc4)

	sybase3

	 Teradata

	Standard

	teradata

SchemaMeta

Is a way to modify input that will affect output from SchemaSpy.

	Add comments/remarks

	Add relationships

	Add remote tables

	Add columns

	Exclude columns from implied relationships

	Exclude columns from diagrams

All these instructions are defined in xml the schema can be found here

Schema contains documentation but lets go through the above mentioned features.

Add comments/remarks

The xsd currently allows both comments and remarks. However remarks has been deprecated.

So adding a comment will either add, if missing from database, or replace if comments/remarks exist.
Supports markdown, example see Add markdown comments using additional metadata

1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
2 <comments>Database comment</comments>
3 <tables>
4 <table name="ACCOUNT" comments="Table comment">
5 <column name="accountId" comments="Column comment"/>
6 </table>
7 </tables>
8</schemaMeta>

Add relationships

 1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
 2 <tables>
 3 <table name="AGENT">
 4 <column name="acId" type="INT">
 5 <foreignKey table="ACCOUNT" column="accountId" />
 6 </column>
 7 <column name="coId" type="INT">
 8 <foreignKey table="COMPANY" column="companyId" />
 9 </column>
10 </table>
11 </tables>
12</schemaMeta>

Add remote tables

Specifying the remoteCatalog and remoteSchema attributes on a table makes it a remote table and as such a logical table.

 1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
 2 <tables>
 3 <table name="CONTRACT" remoteCatalog="other" remoteSchema="other">
 4 <column name="contractId" autoUpdated="true" primaryKey="true" type="INT"/>
 5 <column name="accountId" type="INT">
 6 <foreignKey table="ACCOUNT" column="accountId"/>
 7 </column>
 8 <column name="agentId" type="INT">
 9 <foreignKey table="AGENT" column="aId"/>
10 </column>
11 </table>
12 </tables>
13</schemaMeta>

Add columns

1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
2 <tables>
3 <table name="ACCOUNT">
4 <column name="this_is_new" type="INT" />
5 </table>
6 </tables>
7</schemaMeta>

Exclude columns from implied relationships

Explicitly disables relationships to or from
this column that may be implied by the column’s
name, type and size.

Available options: to, from, all, none

Default: none

1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
2 <tables>
3 <table name="AGENT">
4 <column name="accountId" type="INT" disableImpliedKeys="all"/>
5 </table>
6 </tables>
7</schemaMeta>

Exclude columns from diagrams

Sometimes the associations displayed on a
relationships diagram cause the diagram to
become much more cluttered than it needs to be.
Enable this setting to not show the
relationships between this column and other
columns.

Use exceptDirect to disable associations on all
diagrams except for the diagrams of tables
directly (within one degree of separation)
connected to this column.

Available options: all, exceptDirect, none

Defaults: none

1<schemaMeta xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://schemaspy.org/xsd/6/schemameta.xsd" >
2 <tables>
3 <table name="COUNTRY">
4 <column name="countryId" type="INT" disableDiagramAssociations="all"/>
5 </table>
6 </tables>
7</schemaMeta>

Databases

Microsoft SQL Server

Single Sign-On

mssql

When running SchemaSpy

before -jar SchemaSpy-[version].jar

add -Djava.library.path=[path-to-dir-containing-sqljdbc_auth.dll]

after -jar SchemaSpy-[version].jar

add -sso

When using cmd add -connprops integratedSecurity\=true

When using git bash in windows add -connprops integratedSecurity\\=true

mssql-jtds

When running SchemaSpy

before -jar SchemaSpy-[version].jar

add -Djava.library.path=[path-to-dir-containing-ntlmauth.dll]

after -jar SchemaSpy-[version].jar

add -sso

Frequent Asked Questions

General

Schema or Catalog name can’t be null

This means that Schema or Catalog information could not be extracted from connection.

I this case you need to add options -s [schemaName] or -cat [catalogName]

In most cases for catalog you can use -cat %

In mysql you can use same as -db

“Cannot enlarge memory arrays” when using viz.js

According to viz.js documentation the memory is default 16MB this should be enough.

We have increased this to 64 MB if you receive this error, please report this to us.

I just receive a cryptic error like “ERROR - null”

The code has previously avoided to log stracktraces, we now log them but only when

-debug is used. So any cryptic error can be enhanced with stacktrace by running

SchemaSpy with the argument -debug

OSX

Graphviz

There have been lots of issue with graphviz and OSX

So install using brew brew install graphviz --with-librsvg --with-pango

Depending on OSX version

Older than High Sierra, add -renderer :quartz to the commandline

High Sierra or newer, add -renderer :cairo to the commandline

Markdown

Links to other objects in the documentation

[xyz] will be parsed as link to the table/view named xyz in the current schema

Index

 _static/file.png

_static/minus.png

_static/plus.png

_static/java_tools.gif

_static/java_tools.jpg
JAVA POWER
To0LS

_static/schemaspy_logo.png
= SchemaSey

nav.xhtml

 Table of Contents

 		
 SchemaSpy

 		
 Overview

 		
 What’s new

 		
 6.0.0

 		
 6.1.0

 		
 Features

 		
 Sample documentation

 		
 SchemaSpy GUI

 		
 Installation

 		
 Docker Image

 		
 Application

 		
 Prerequisites

 		
 JDBC Driver

 		
 Get Started

 		
 Configuration

 		
 Running SchemaSpy

 		
 Parameters priority

 		
 Commonly used parameters

 		
 Advanced Usage

 		
 Supply Connection-properties

 		
 Create your own DB type

 		
 Supply or override database type

 		
 Create you own DB type super advanced

 		
 Add markdown comments using additional metadata

 		
 Command-Line Arguments

 		
 General

 		
 Database related

 		
 Connecting

 		
 Processing

 		
 Additional data

 		
 Html report related

 		
 DataTables related

 		
 Parameters for Tables table in src/main/resources/layout/main.html

 		
 Parameters for Columns table in src/main/resources/layout/tables/table.html

 		
 Parameters for Indexes table in src/main/resources/layout/tables/{table_name}.html

 		
 Parameters for Check Constraints table in src/main/resources/layout/tables/table.html and src/main/resources/layout/constraint.html

 		
 Parameters for Routines table in src/main/resources/layout/routines.html

 		
 Parameters for Foreign Key Constraints table in src/main/resources/layout/constraint.html

 		
 Parameters for Columns table in src/main/resources/layout/column.html

 		
 Parameters for all tables in src/main/resources/layout/anomalies.html

 		
 Diagram related

 		
 DatabaseType

 		
 Selection

 		
 Layout

 		
 ConnectionSpec

 		
 Other Properties

 		
 Sql query instead of DatabaseMetaData

 		
 Included

 		
 SchemaMeta

 		
 Add comments/remarks

 		
 Add relationships

 		
 Add remote tables

 		
 Add columns

 		
 Exclude columns from implied relationships

 		
 Exclude columns from diagrams

 		
 Databases

 		
 Microsoft SQL Server

 		
 Single Sign-On

 		
 Frequent Asked Questions

 		
 General

 		
 Schema or Catalog name can’t be null

 		
 “Cannot enlarge memory arrays” when using viz.js

 		
 I just receive a cryptic error like “ERROR - null”

 		
 OSX

 		
 Graphviz

 		
 Markdown

 		
 Links to other objects in the documentation

